245 research outputs found

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Influence of structural isomerism and fluorine atom substitution on the self-association of naphthoic acid

    Get PDF
    The self-association of small aromatic systems driven by π-π stacking and hydrophobic interactions is well known. Understanding the nature of these interactions is important if they are to be used to control association. Here, we present results of an NMR study into the self-association of two isomers of naphthoic acid along with an investigation into the role of a fluorine substituent on that self- association. We interpret the results in terms of a simple isodesmic model of self- association and show that the addition of the fluorine atom appears to increase the stability of the aggregates by an order of magnitude (e.g. 1-naphothic acid vs 4- fluoro-1-naphthoic acid Keq = 0.05 increases to 0.35 M-1), a result which is supported by computational studies in the literature on the role of substituent effects on interaction energy. The use of fluorinated isomers to probe the assembly is also presented, with differing trends in fluorine-19 chemical shifts observed depending on the isomer substitution pattern

    Pyrolysis Gas Composition for a Phenolic Impregnated Carbon Ablator Heatshield

    Get PDF
    Published physical properties of phenolic impregnated carbon ablator (PICA) are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented

    S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures

    Get PDF
    With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set

    Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections

    Get PDF
    In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems.Financial support by the “Ministerio de Economía y Competitividad” (MINECO) of Spain and European FEDER funds through projects CTQ2011-27253 and CTQ2012-31914 is acknowledged. The support of the Generalitat Valenciana (Prometeo/2012/053) is also acknowledged. J.A. thanks the EU for the FP7-PEOPLE-2012-IEF-329513 grant. J.C. acknowledges the “Ministerio de Educación, Cultura y Deporte” (MECD) of Spain for a predoctoral FPU grant

    A Medicinal Chemist’s Guide to Molecular Interactions

    Get PDF
    corecore